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Abstract-After a review of the quantum mechanical formulation of vibrational-electronic coupling, 
the adiabatic approximations for ordinary absorption dipole strength and circular dichroic absorption 
rotatory strength are presented and interpreted. The expressions include the effect of two vibrational 
quantum changes coupled to electronic excitation in addition to the more familiar concept of coupling 
by a one quantum change. A polar&ability theory of vibronically coupled rotatory strength is 
presented which is comparable to the polarizability theory of rotatory strength without regard to 
vibration. 

INTRODUCI-JON 

The thrust of most investigations using optical ac- 
tivity has been toward a straightforward appraisal 
of molecular structure that gives rise to chirality. 
There has been a growing realization however that 
such spectral information about the molecule in its 
stationary equilibrium form is not always readily 
discerned nor easily separable from dynamic 
effects in the observed optical activity. Both natural 
and magnetically induced optical activity, espe- 
cially in the form of circular dichroism, have been 
the subject of theoretical and experimental studies 
along these lines. 

The following material summarizes and integ- 
rates the prior work on this subject. As well, it 
introduces the most recent developments of the re- 
search group in our laboratory. The reader who is 
interested in more detail will want to consult the 
original or, in some cases, forthcoming publica- 
tions. 

QUANTUM-MECHANICAL FOUNDATIONS: 

THE RORN-OPPENHEMEX SEPARATlONt 

Born and Oppenheimer showed’ that in a molecu- 
lar system, the electronic and nuclear motion oper- 
ate on such different time scales that, to a certain 
approximation, they may be regarded as occurring 
independently. To achieve this result and define its 
limitations, consider the Schroedinger equation for 
combined electronic and nuclear motion 

W’(q, Q) - El’I’(q. Q) = 0 (1) 

“Taken in part from the doctoral dissertation of Edith 
C. Ong, Tulane University (1973). 

+Thk section draws headily on the work of W. Moffitt et 
al. See for example, W. Moflitt and A. D. Liehr, Phys. 
Rev. 106. 1195 (1957). 

where q and Q are respectively the electronic and 
nuclear coordinates. The molecular Hamiltonian X 
can be written in two parts: 

X(q, Q) = T”(Q) + %e(q, Q) (2) 
where T.(Q) is the kinetic energy operator of the 
nuclei and Ze(q, Q) is the electronic Hamiltonian 
which contains the kinetic energy operator for the 
electrons, their potential energy in the field of the 
nuclei, their mutual repulsions energy and the 
mutual repulsions energy of the nuclei. 

%‘=(q. Q) is precisely the Hamiltonian used for or- 
dinary quantum computations of molecular elec- 
tronic properties. Such computations define an 
eigenvalue electronic energy VK (including the 
coulombic nuclear repulsion) for each set of nuc- 
lear positions which may be defined. 

On the other hand, the eigenvalue E of Eq 1 gives 
the combined energy of electronic motion, all 
coulombic attractions and repulsions, together with 
the energy of nuclear motion. The corresponding 
eigenfunction ‘P(q, Q) of Eq 1 gives a probablistic 
interpretation of where mooing nuclei, as well as 
moving electrons, spend their time in the molecule. 

For the purpose of solving Eq 1 the electronic 
Hamiltonian, Y&, can be written as a Taylor series 
expansion to the quadratic terms in the nuclear nor- 
mal coordinates about the undistorted molecular 
configuration; i.e., the nuclear equilibrium position, 
Q, = 0 for all r. 

sUr.(s. Q) = %‘: + 2 ($$),Q, + i z ($$j-)o~r~s. 
(3) 

It is also possible to construct sets of functions 
V,(Q) and PLK(Q) which are power series in Q: 

V,(Q) = vKo + C lKr~r + i 2 1 :Q,Q. (4) 
I., 
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PL~Q) = P:K + c PIKQ, + ‘2 c PC,QrQ.. (5) 
r ,.I 

It is further assumed that the eigenfunctions 
&O(q) to the electronic Schroedinger equation for 
the undistorted molecule: 

Ve: - VKo)$K%j = 0 (6) 

form a complete set in the electronic coordinates q. 
and that the eigenfunction, I&‘(S) can be extended 
by the usual perturbation method about the nuclear 
displacement coordinates: 

and after making further substitution of Eq 9 into 
Eq 11, Eq 1 finally takes the form: 

7 ‘/‘K(q, Q) [[T.(Q) + v,(Q) - E)xK(Q 

+ XK 7 Gdqt Q,Puc(Q,) = 0. (131 

Non-&generate states 
Taking a state function Jly that is non- 

degenerate, multiplying it into Eq 13 and integrating 
gives: 

Wq, Q) = (LK’((I) + L& CLK(QMLTQ) (7) 

where 

C,(Q) = x G,Q, + ; 2 C?xQrQs. (81 
I ,.f 

The coefficients C,,(Q) are chosen in such a way 
that, for arbitrary displacements Q,, the &(q, Q) 
form a complete orthonormal set with respect to 
the electronic coordinates q. 

Then Eqs 3-5 and 7-g satisfy the equation 

LT.(Q) + V,(Q) - EIXM = 0 (141 

an harmonic oscillator eigenvalue problem. Only 
one xrc is defined for an E, therefore an eigenfunc- 
tion of Eq 1 for a non-degenerate state M = K takes 
the form 

Wq. Q) = JIK(q, Q)xK(Q) (151 

where JIK(q, Q) is a solution to the electronic 
Schroedinger equation at various fixed nuclear con- 
figurations, expressed as in Eq 7, and xx(Q) is any 
one of the harmonic vibrational eigenfunctions for 
the K electronic state function V,(Q). 

[X(q, Q) - V4QNMqr Q) = 7 P4QW(qr Q). 

(91 

Eq 15 is often expressed in its zeroth-order ap- 
proximation: 

The coefficients IL, I”, PU and P3 of Eqs 4 and 5, 
just like the coefficients CtK and C”, of Eq 8, are 
defined by second order perturbation theory and 
the matrix elements (Yl”l(~WaQ&l~~~ and 
(~~l(a’sr~aQ,aQ,)olY,4. 

The perturbation definition of terms in Eq 5 
shows that PLK = 0 for any L states that are not 
degenerate with K. Therefore we see that Eq 9 is 
the analog of the electronic Schroedinger Eq 6 
when rj~~ is non-degenerate. However, Eq 9 is 
generalized to represent the eigenvalue problem 
when the molecule is distorted, i.e., when Q # 0. 
When I)~ is one member of a degenerate set, the 
non-vanishing PLK are responsible for the peculiar 
phenomena known as Mm-Teller and Renner 
effects. 

Wq, Q) = (LK~(CL)XK(QI (16) 

where &O(q) is the zeroth-order term of the 
&(q, Q) expansion in Eq 7. But it is important to 
note that the Born-Oppenheimer adiabatic approxi- 
mation, Eq 15, is consistent with the harmonic 
description of vibration to a level including wave 
function coefficients C& 
a%/aQ,aQ.. 

that depend on 

Degenerate states 
For an example, we may consider a doubly de- 

generate state with components I&,,, and &. Multi- 
plying &, and GLM’ in turn into Eq 13 and integrating 
will give coupled equations for the vibrational 
eigenvalue problem: 

The complete set $,dq, Q) are used to expand the [T.(Q) + V,(Q.l - EIXM + PWWXW = 0 
eigenfunction of Eq 1 PwMx,., + lT.(Ql+ V,(Q) - Elxw = 0 (17) 

‘y(q. Q) = c @K(q, QMQ) (10) A XH and a xW are defined for each value of E. 

which with Eq 2 allows the equation of combined 
electronic and nuclear motion Eq 1 to take the form 

F (X + T.(Q) + VK - VK - WKh Q)x,dQ) = 0. 

(11) 

In such a case the eigenfunctions to Eq 1. defined 
by specific values for the eigenvalue E, must be 
expressed by two terms K = M, M’ in Eq 10. In 
addition the vibrational wavefunctions xkl and XM 
will reflect the peculiar properties associated with 
the dynamic Jahn-Teller and Renner effects. 

After applying the commutation relationship Vibronic coupling 

(12) 

Two limiting cases of vibronic coupling, the in- 
teraction of vibrational and electronic motions, are 
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now readily defined. In the adiabatic approxima- 
tion, the nuclei move and electronic motion is fully 
adjusted to each instantaneous nuclear configura- 
tion. The vibronic coupling is represented by the Q 
dependence of &(q,Q) in Eq 15. 

In the non-adiabatic approximation the nuclear 
motion is modified by the electronic motion. The 
vibronic coupling can be represented entirely by 
the vibrational wavefunctions of an expression 

‘Wq. Q) = JIs~‘((I)xw(a + @&0x&) (18) 

where these vibrational wavefunctions x,,,(Q) and 
x,.,.(Q) are given by the coupled Eqs 17. 

The most general expressions for vibronic coup- 
ling must contain both types of representations. 
Near degeneracies, rather than exact, may require 
the general form of Eq 10, giving rise to pseudo- 
Jahn-Teller effects and the like. On the other hand, 
exact or essential degeneracies may require nuclear 
dependence of the electronic wavefunction for a 
sufficiently precise description, again achieving the 
general form of Eq 10 in place of the limiting form 
in Eq 18. 

Very little work has appeared on the circular 
dichroic properties of transitions between elec- 
tronic states where the non-adiabatic approxima- 
tion for vibronic coupling is required.“’ Much more 
attention to this area is warranted. It must be consi- 
dered in a complele theory of natural and magneti- 
cally induced circular dichroic absorption of 
polymers and coordination complexes of metal 
ions. 

ORDINARY AB.SORPllON AND CIRCULAR 
DICRROIC ARSORPlTON 

For transitions between states that are well sepa- 
rated in energy from others, the adiabatic approxi- 
mation is generally assumed to give the dominant 
effects of vibronic coupling. The theory is more 
complete in this instance.c7 

The ordinary absorption and circular dichroic ab- 
sorption between eigenstates of Eq 1 are then gov- 
erned respectively by 

I% = I(Nnll,c lKk)l’ 

the dipole strength, and 

Rki = Im{(Nnlw [Kk) * (Kk(mlNn)} 

the rotatory strength. In this notation 
adiabatic approximation, the Y(q. Q) are 

(19) 

(20) 

for the 
indexed _ 

by K (or N for the ground state) which refers to Bq 
9 in its non-degenerate form (PLK = 0). It is further 
indexed by k (or n), referring to Eq 14 M = K (or 
N). Here k indexes the various vibrational quantum 
states possible in the given electronic state. 

The electric and magnetic dipole transition mo- 
ments by the use of Eqs 7 and 10 become 

(NnlCclW = W’lp IK”Xnlk> + 2 C(IQ$d 
r 

+ i c Cm(nlQrQdk) 
,.I 

(21) 

(Kk)mlNn) = (K”lm)tiXk)n) + c B,(klQM 

+ k z Bm(klQrQsld rcs (22) 

where the nuclear normal coordinate dependent 
terms are factored off to the right and integrated 
over normal coordinate space. The left hand factor 
in each term consists of integrals over the elec- 
tronic coordinates only. (N”IplK’) and (K’lm(N”) 
are the transition electric and magnetic dipoles in- 
herent for the undistorted molecule. C,, B,, C,, and 
B, are transition electric and magnetic dipoles 
created by vibrational distortions. 

The vibrational detail implied by Eqs 19 and 20 is 
not always observable in an electronic spectrum. 
Thus it is useful to consider the sum over such 
spectral structure: 

D,=cD:: (23) 
L 

Rx=zRE (24) 
L 

where we have also assumed a low temperature 
limit. The index No implies that only the zero-point 
vibrational level is populated in the electronic 
ground state. 

Carrying out the required summation with some 
quantum manipulation yields:’ 

I& = IL+ D,, 

= I(N”lcc IK”)I’ + c ICI*& 
r 

+; 2 (C” * cs, + 21crs13&& r.s 

and 

w 

RK = RK. A + &.F 

= Im 
( 

(N%I IK? * (~lm[Na) + c C, . B,& 
I 

+ ; [(N% IK? . c Brr + F Cm * (K”lnW’+ 

+ ; [z C, * B,. + a, * C&5.] 

+ ; z (C” . BACX.]. (26) 
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The parameter & is a measure of the extent of 
molecular distortion by the rth nuclear normal 
coordinate. 

Previous developments of the theorye suggested 
that vibronicalIy coupled moments will not com- 
bine effectively with moments of the undistorted 
molecule to contribute to the total electronic rotat- 
ory strength. It is apparent from Eq 26 that an 
important contributing term to the net rotatory 
strength can be 5 XC,. (K”lml~)&. This term 
necessarily applies ’ to molecules where two- 
quantum vibrational transitions in the electronic 
transition are responsible for generating electric di- 
pole intensity, i.e., when there is two-quantum vib- 
ronic coupling. Such two-quantum vibronic coupl- 
ing terms are necessarily associated with the vibra- 
tional integrals {O,lQ:lk,) and {O,O,IQ,Q,lk,k.) of Eq 
21 which in the simplest approximation are non- 
zero only for k, = 0,2 and k, = k, = 1 respectively. 

Eqs 25 and 26 each have a first term which can 
produce absorption in the absence of effective 
molecule distortion by vibration. Absorption of 
such origin has been called “allowed character*’ in 
contrast to the vibronically coupled absorption of 
the remaining terms called “forbidden character”.* 

So it would appear that a complete computation 
of electronic circular dichroic absorption should 
consider the magnitude of both “characters” as 
well as their signs, which may or may not differ. It 
should also be desirable to have some knowledge of 
how each “character” distributes itself in the spec- 
trum. 

Thus it is appropriate to consider computational 
models for the “allowed” and “forbidden charac- 
ters”. While the models to be developed here have 
an element of naiveness, their simplicity can reveal 
the essential structure of more complete calcula- 
tions. The models will apply to inherently symmet- 
ric chromophores, where in a zero-order approxi- 
mation the absorption of energy is limited to a 
portion of the molecule. That portion taken alone is 
optically inactive. The chromophore in a dissym- 
metric molecule develops circular dichroism in its 
absorption from interaction with the rest of the 
molecule. 

“ALLOWED CHARACI’ER” ROTATORY 
STRENGW 

The “allowed character” rotatory strength of an 
inherently symmetric chromophore is: 

RK.* = Im0J% IKO) - (K”lmlN’% 

= - i&%,B,ICt IA,BJ - (A,B,lml&BJ. (27) 

The correct wavefunctions can be expanded to the 
first order of perturbation, 

*“Dynamic” in this context has been used’ for purely 
electronic effects, not to be confused with the molecular 
dynamics accompanying nuclear motion. 

IA&J = IA,B,) 

+ 2 (EL - E, - E,)-‘(A,B,1VIA,B31A,B3 
,.I 

(28) 

with m = 0 for the expansion of the gound state 
wavefunction I&&). The basis set (A,B,) consists 
of the simple product of spectroscopic state real 
wavefunctions of chromophore, A,, and an extra- 
chromophoric perturber, B.. No electron exchange 
and negligible differential overlap between the 
chromophore and pe&rrber are assumed. The per- 
turbation V is the electrostatic energy of interaction 
between the chromophore and perturber charge 
distributions. 

The transition electric dipole moment for the 
composite system has the leading terms: 

f hTm G - I% )-‘(A, B&‘tA,B.)a,t 

+ 7 (E, - EI)-‘(&BI IVIA,BJC~., . 
(291 

Here k indicates that states of the ~hromophore 
which combine with the state 0 to give nonzero 
electric dipole moments. Those states of the per- 
turber system giving nonvanishing electric 
transition-dipole moments are designated by 1. 
Thus transition dipoles of the chromophore j&k 
and of the perturber par can be mixed into the 
zero-order transition dipole p,,. If necessary, the 
transition magnetic dipole can be expanded in a 
similar way. 

To evaluate the matrix elements of the perturba- 
tion V in Eq 29, the coulombic potential of interac- 
tion is expanded as shown in Table 1. There R is the 
distance between the centers of gravity of per- 
turber and chromophore charge distribution; X, Y, 
and Z are the signed components of that distance. 
Charge (c), dipole (CL), quadrupole (Q), and if 
necessary, higher multipole components of the re- 
spective “charge distributions”, e.g., \A&) and 
IB,BJ, are required. Their electron coordinates, x, 
y, and z centered on the respective subsystems, 
have the same spatial orientation as X, Y, and Z. 

Dynamic coupling* 
When a transition of the inherently symmetric 

chromophore of point group C1, is magnetic dipole 
allowed and electric dipole forbidden (porn = 0) the 
last term of Eq 29 contributes to an expression: 

R., = - 15iR-‘XYZa&:Y,mL, (30) 

where 

a.=;7 E~(E:-E,‘)-‘lp,rl~ (31) 
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for a perturber that is non-polar and has an iso- 
tropic polarizability. A remarkable feature of this 
expression is that the correct absolute signs of the 
octant rule sectors for optically active ketones can 
be deduced from the Mulliken-McMurry model for 
the n - rr* (3000 A> transition of the carbonyl group 
in ketones. That is, i@A& is real, negative, and 
large in atomic units. The coordinate system and 
signed octants are shown in Fig 1. Eq 30 predicts 
that any substituent perturber placed off the octant 
nodal planes, thus rendering the molecule optically 
active, will produce an allowed character rotatory 
strength and circular dichroic absorption with the 
sign shown in Fig 1. 

Y 

!LL 'C 
X 

J 
0 

z 

Fig 1A. The molecular co-ordinate system for Table 1. 
The origin is located at the center of the chromophore. A 
molecular framework is depicted upon which a dissym- 
metrically placed pertruber may be substituted. The addi- 
tive effect, according to Eq 30, of the constituents of the 
framework gives no contribution to rotatory strength. The 
(usual) increment in polarizability upon substitution gives 
a net rotatory strength. 

B. The same molecular coordinate system with oc- 
tant rule sectors depicted. The sign of rotatory strength 
that results from the substituent falling in a given sector is 

shown for each octant. 

*The general structure of theory in this section was pre- 
sented at the Ann Arbor meeting, National Academy of 
Sciences (October 1%7). 

When a transition of the inherently symmetric 
chromophore of any point group is electric dipole 
allowed &,,,#O) an expansion instead of the 
magnetic transition dipole is required. The leading 
term for rotatory strength will depend on aniso- 
tropy in the polarizabihty of the per-tuber. It is 
convenient to represent such anisotropic polariza- 
bility by an ellipsoid of revolution. 

Orienting the transition electric dipole of the 
chromophore along the Z coordinate axis with its 
center at the origin and rotating the molecular sys- 
tem about this axis can bring the perturber polariza- 
bility ellipsoid axis parallel to the XZ plane. This is 
depicted in Fig 2 and defines the angle 8. 

The “allowed character” circular dichroism then 
depends on the sum of two terms. When 8 = 90”, an 
octant rule, as depicted in the upper right of the 
figure, applies to the sign of circular dichroism that 
depends on the perturber placement when oriented 
as described. When the perturber is positioned to 
lie on the octant nodal surfaces, circular dichroic 
absorption will still result if 8 f 0,90”. The circular 
dichroism sign then depends on the perturber posi- 
tion according to the conical sectors shown in the 
lower figure. For more general conditions, both 
terms will contribute. 

static coupling 
The second term of Eq 29 gives rotatory strength 

that depends on charges in the molecule. For a 
transition of an inherently symmetric chromophore 
of point group G that is magnetic dipole allowed 
and electric dipole forbidden, the leading term is: 

L = - 3iR%Yee kTm (E, - E~)-‘@;Ym~Lm:O. (32) 

The coordinate system of Fig 1 is applicable. The 
summation term, like @:Lrn’,. of Eq 30, is a constant 
of the inherently symmetric chromophore transi- 
tion. Such static charges l B can arise from 
substituent dipoles, incomplete nuclear screening, 
and the like. According to Eq 32, they should lead to 
a quadrant rule behavior. 

“FORRIDDEN CHARACIER” ROTATORY 
srRRNGm* 

Instead of a more general development, we will 
consider that part of the “forbidden character” 
rotatory strength RK.F, Eq 26 that arises from one- 
quantum vibronic coupling. The perturbation de- 
finition of CLK, Eq 8 yields: 

C, . B, = c (E, - E,)-‘(E, - E,.)-’ (33) 
. ..’ 

where [AB], indicates either A,B, or A.B, type 
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terms and 
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8 

2 
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sin 28 

5P.l 

Fig 2. A two-term rotatory strength for the “allowed character” of a dipole allowed transition. The 
sectors are interpreted as in Fig 1. The trigonometric functions and polarizability anisotropy are 
additional factors that control the sign of rotatory strength. The signs shown are for perturber aniso- 
tropy (a, - a,) >O and, for the conical surfaces, 0 < 8 < m/2, where 0 is defined as shown in the 

upper left. 

The normal coordinate Q, can be expanded: 

IT= [a(H*+HHB+V)/aQ,]o. (34) 
Qr=Qr”+Q, 

The matrix elements I-IL, = ([ABI. lH’]A,B,) can 
=Tl,a.*+Q, 

(36) 

be expanded by Eq 34. It can be shown that the 
only important contribution to the transition rotat- 
ory strength of a single r mode derives from the where Q,^ is a symmetry coordinate of the subsys- 
perturbation Hamiltonian tern A. Qr* and Q, are the parts of the normal coor- 

dinate located in A and B. Then for one of the terms 
I-I’= [a(H*+V)/aQ,]o. (35) in (LAB], IKIAJV 

This is due to the fact that for H’ = [aH”/aQ&, the 
matrix element IT- = (B&a W/a Q,)oJBO)(AilA,) or 
(BrI(a~/aQ,),IBo)(h(A,). The terms vanish due to 
orthogonality of the chromophoric wavefunctions. 
Therefore, one cannot expect forbidden character 
to arise from a vibrational dependence of the prop- 
erties of the perturber itself. 

The nuclear normal coordinate Q, associated 
with the distortions represented in Eq 33 gives an 
in-phase movement to every nucleus in the 
molecule. On the other hand the familiar concepts 
of group vibrations and the existance of functional 
group frequencies illustrate the fact that certain 
nuclei of a molecule usually carry out more motion 
than others for a given mode of vibration. It is 
helpful to define certain limiting conditions for the 
distribution of vibrational motion in the total 
molecular system. 

one may apply symmetry arguments to determine 
the states a (or more specitically i) of Eq 33 which 
will have non-vanishing (~&aH”/aQ.~)olA,,,). 

Case III A will be defined as the limiting case 
where l.* are non-zero for symmetry coordinates of 
more than one irreducible representation of the 
symmetric chromophore. 

Then “forbidden character” rotatory strength, 
Eq 33, contains terms 

C, . B, = & z (Em - W’(Em - E,)-’ 
.’ 

(38) 
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Note that both transition dipoles are of the inher- 
ently symmetric chromophore. 

For an inherently symmetric chromophore, the 
scatar product pei - mt, must vanish by symmet~ 
whenever Q,” and Q.? belong to the same represen- 
tations of the chromophore point group. The scalar 
product need not vanish, however, when the rep- 
resentations are different. Fig 3 details an example 
of such ketone activity. 

Fig 3. A dissymmetric vibration Q. resolved into compo- 
nents that transform as a, and a2 of the CL point group. 
According to Eq 38 and assuming the transition is the 
n-p*, a vibronic electric transition dipole parallei to the 
C==O axis will be created by the a, component. A vibronic 
magnetic transition dipole also along the G-0 axis will be 

created by the a, component. 

The limiting case represented by Eq 38 does not 
depend at all on V, the perturbation required in the 
fo~ulations of allowed character rotatory 
strength. The forbidden character rotatory strength 
is that of a chromophore (or an even greater portion 
of the molecular system) which remains electroni- 
cally symmetric in its vibrational equilibrium posi- 
tion, but undergoes dissymnetric vibration. A cal- 
culation with Eq 38 requires a complete normal 
coordinate analysis of the total molecular system to 
obtain the terms 1,” and 13. KIingbief and Eyring” 
have carried out calculations of this type for bicyc- 
loheptanone systems. 

The calculation of matrix elements such as 
(A&aHA/aQsA)&) has been critically reviewed in 
the work of Liehr.” The definition of coefficients 
C& in Eq 8 caIIs for wavefunctions in the matrix 
element that are exact for the undistorted (Qr = 0) 
molecule together with an infinite summation over 
states i and k in Eq 38. 

Liehr’s work shows that with the usual limited 
computational basis set of states, it is more exact to 

*More precisely, the term measures the motion of pcr- 
turber B refutiw to the chromophore A. Pople and Sid- 
man’* give examples of the rotational and translational 
transformations that derives the term from the normal 
coordinate. 

IThe relation of normal modes a,, etc. to coefficients I/, 
etc. has been made ideatly simple. Actually, an a, mode, 
for example, may have non-v~ishi~ 1,” as well as 1.‘. 

replace (Alt8H”/~Q,hlAd by [~(AIHAIAm)/~Q~*l~ 
while “floating” the atomic orbital basis set along 
with the moving nuclei. In such a scheme, the im- 
portant cont~butions of electrons adiabatic~iy fol- 
lowing nuclei, in addition to the contributions of the 
moving nuclei themselves,‘““2 are preserved in 
computing the vibronic coupling.‘” 

Case III B will be defined as the limiting case 
where all l,* = 0 except for one well chosen 
symmetry coordinate Q,^_ The lowest order terms 
for ~‘forbidden character” rotatory strength in Eq 
33 arises from 

C, . B, = c (E, - EJ’(E, - El)-’ (39) 
r1 

(PQk 1 mt, + cd - m,,) 

where for the dynamic coupling matrix element: 

+ I,Y ~~B~l(~)*l~B,) 

+ 1,’ (A.B.~($#oB,). (40) 

Note that in Eq 39 one transition dipole is of the 
chromophore, the other of the perturber. 

The term 1,” for exampie is related* to the coeffi- 
cient of the X displacement coordinate (mass 
weighted) of B in the rth normal coordinate. 

The matrix element operator (aV/ax), can be 
found in Table 1. For example, when V is the 
charge-dipole term, the terms of (d V/a x), consists 
of the dipole-dipole terms for V that contain II. (B), 
but with Q (B) replacing CL, (B). Similarly when V is 
the dipole-dipole term, the terms of (aV/az), con- 
sist of the dipole+uadrupole terms for V that con- 
tain 8,(A). 8,,(A) and 8,(A) but with ~1~ (A) re- 
placing 9, (A), CL, (A) replacing @,, (A) and pr (A) 
replacing 8,, (A). Such an evaluation of the matrix 
etement satisfies the criticisms put forward by 
Liehr” for the computation of vibronic coupling. 
With these observations the same techniques which 
yield models for allowed character rotatory strength 
such as Eqs 30 and 32 will yield models for forbidden 
character rotatory strength. 

Assume now that the forbidden character is as- 
sociated with the ‘A2 + ‘A, n-R* transition of a Czv 
symmetric carbonyl function (A) of an optica.Iiy ac- 
tive ketone. The ketone activity is assumed to arise 
from one substituent (B) creating dissymmetry, as 
in a mono-substituted adamantanone. The four vib- 
ration symmetries of the Czr point group give the 
foIIowing “forbidden character” rotatory 
strengths? 
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Table 1. Expanded terms of coulombic potential between two nonover- 
lapping charge distributions A and B 

Charge-dipole 
V = l (B)R-‘(XPL.(A) + YP,(A) + ZPL.(A)I 

Charge-quadrupole 
V = c(B)R-‘[(1/2)(3r - R?&.(A) + (1/2)(3y - R’)&(A) 

+ (1/2)(3p - R?@,(A) + 3XY&,(A) + 3X20..(A) + 3YZB,.(A)l 
Dipole-dipole 

V = R-‘{[(R’- 3X=)4B) - 3XY4B) - 3XZ/~z(B)lfi.(A) 
+ [- ~XYP.(B) + (R’- 3Y=MB) - 3YZfi.(B)MA) 
+ I- 3XZk.(B) - 3YZcc,(B) + (R’ - 3Z=MB)MA)~ 

Dipole-quadrupole 
V = (3/2)R-‘{[(3R’X - SX’)/L.(B) + (R’Y - SX?‘)/.L,(B) 

+ (R’Z - S~Z)Cr.(B)l’L(A) 
+ [(R’X - SW)p.(B) + (3R’Y - 5Y’)j4B) 
+ (R’Z - 5Y%z(B)lk(A) 
+ [(R’X - SXZ’)k.(B) + (R’Y - SYr)p,(B) 
+ (3R’Z - SZ’)F,(B)l&.(A) 
+ Z[(R’Y - ~X~‘)/.L.(B) + (R’X - SXY=)py(B) 
- SXYZp.(B)l&,(A) 
+ 2[(R’Z - SXZ)/.L.(B) - SXYZ/+(B) 
+ (R’X - SXZ%.(BN &.(A) 
+ 2[- JXYZpL.(B) + (R’Z - SY%)p,(B) 
+ (R’Y - 5YZ%L.(BN ‘&.(A)} 

R& = - 15iXY(R2 - 7Z*)R~9a&~l,d,‘M’~ (41) 

Rz F = $Y(R* + 10x’ - SY~R-7a,S;:&, g l,‘M4 
(42) 

R& = ISXYZR-‘a&&E,, 2 l,YMbl (43) 

RbKIR = - 15XYZR-7u,,@::,E,.$Mb~ (44) 

Mb1 is essentially a constant of the inherently sym- 
metric chromophore for a given vibrational mode 
of the given symmetry. Mb1 is obtained by replacing 
piI by ~2. For M4 and M’I. ~2 and m’, respectively 
replace p 2. 

One must keep in mind that Eqs 41-44, like the 
equations for “allowed character” rotatory 
strength, are based on leading terms. Successive 
terms and other terms depending on anisotropy of 
polarizability, for example, are not given and might 
contribute significantly in more complete calcula- 
tions. 

Eq 44 for R2F closely resembles the “allowed 
character’* exprkssion, Eq 30, even predicting an 
octant rule. The term im. of Eq 30 is replaced by 
E., (2~/hc) l:Mbl. By some rearrangement 

The term in brackets is a dimensionless quantity 
that governs ordinary absorption vibronically 
coupled dipole strength. We may compare the re- 
maining term to a magnetic transition dipole im:,,. 
Since e/2m,c is the gyromagnetic ratio, lrY.$,“* takes 
the place of a radial distance and 2n4E.+L/2h is a 
momentum perpendicular to the radial vector. Eq 
42 for R: F, having a sector rule other than octant- 
like, could yield “forbidden character” rotatory 
strength where the “allowed character” according 
to Eq 30 is minimal. 

The p-axial substituted adamantanones synthes- 
ized by Snatzke et 01.” should follow closely the 
assumptions of the model. Their circular di- 
chroisms show anomalies that are readily accom- 
odated as “forbidden character”. 

THE DISIRIRUI’ION OF “ALLOWJID” AND 
VORRIDDEN CHARACTER’*’ 

When considering for example the n - w* transi- 
tion of a ketone, Eq 30 defines the integrated total 
“allowed character” rotatory strength RK.*. As Eq 
24 implies, this integrated total represents the sum 
over such detailed structure in the electronic UV- 
visible spectrum as can be ascribed to the “allowed 
character” mechanism. 

In a similar way Eq 44, for example, represents 
the integrated total “forbidden character” RK.F aris- 
ing from a b2 chromophore vibration. While Eq 44 is 
limited to “one quantum” vibronic coupling, “for- 
bidden character” will also obtain from the “two 
quantum” coupling mechanisms involving C, and 
B, terms of Eq 26. 

Where do the “allowed character” and “forbid- 
den character” RE fall in a spectrum? It is possible 
to define such things as the center of gravity and the 
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Fig 4. A schematic distribution of K-N absorption band 
“spikes” and the parameters for characterization of the 
distribution. Each spike has the area DZ and is centered 
at the frequency CO::. DK is the total area under the spikes. 
The mean frequency & is the center of gravity of such a 
distribution. The width AwK is a measure of the spread of 
the distribution. If the distribution is Gaussian, the width 
is one half of the frequency interval between the two 
points where the intensity falls to l/e of the maximum. In 
many cases, the conditions of observation yield a smooth 

curve for the distribution. 

spread or width of their distribution. (See Fig 4.) 
While this still avoids an answer feature for feature, 
it is advantageous for a number of reasons. As al- 
ready mentioned, the vibrational detail represented 
by a discrete peak for each REf, may not be discemi- 
ble in a spectrum broadened by solvent effects or 
extensive overlap of peaks. Secondly, even if a 
given detail Rit is discernible, part of its intensity 
may be “allowed character” and part “forbidden 
character”. Finally, it seems likely that such ex- 
pressions can be used to analyse in a broad sense a 
broad curve of solution circular dichroism, some- 
what as detailed vibrational analyses are made of 
discrete ordinary absorption spectra recorded from 
the vapor phase. 

The spectral distribution of “allowed character’*, 
as given by its center of gravity and its width, is the 
same for circular dichroic absorption as it is for 
ordinary absorption. Moreover the peaks RGi and 
DNy for each k (Fig 5). if discernible, will have the 
same relative intensity as well as position in fre- 
quency. 

The center of gravity or mean frequency is given 
by: 

The first two terms define oki the position of the 
O-O vibrational band. The last two terms move the 
center of gravity to higher values. They reflect the 

Fig 5. Upper panel: The nuclear potential surfaces V, 
and V, (cf. Eqs 9 and 14) for a molecular system as a 
function of one normal co-ordinate Qn.,. The origins of 
the potential surfaces are separated by the energy V,“. 
The levels contained in the parabolas correspond to eigin- 
values of Eqs 1 and 14. In this case the normal mode co- 
ordinate in the upper state is given by Q. = Qfi., + 8, indi- 
cating a change in molecular size or shape accompanying 
electronic excitation. Normal mode frequencies are o. = 
o,,.,. These conditions correspond to no mixing of modes 
accompanying electronic excitation. 

Middle Panel: The “allowed character” spectrum that 
arises from the set of potential surfaces. Several sets may 
contribute in a spectrum. For both ordinary and circular 
dichroic absorption, all such features will have the same 
sign. When 6. = 0, only very small portions of the 2-0, 
4-0, 6-O. etc. bands will appear in addition to the O-O 
band if w,# Ok. The “allowed character” distribution 
has some mean frequency c&.~. The frequency 0:: 
designates the location of the real origin, the O-O band. 

Lower Panel: A schematic “forbidden character” 
spectrum that arises in part from the potential surfaces 
shown. The progression O.-O), L-0, 2,-O, 3,-O, 4,-O, etc. 
represents one- and two-quantum coupling when 8, f 0. 
The appearance would be similar but not identical if only 
one-quantum coupling were important. The progression 
1,-O, 3,-O. 5,-O. etc. represents one-quantum coupling 
with 6, = 0. o, # o,,,). The feature 1,1,-O arises from 
two-quantum coupling. The sign in circular dichroism for 
the one-quantum coupled component and the two- 
quantum coupled component, like the sign for the “al- 
lowed character”, are given by the respective terms in Eq 
26. Each feature could serve as a “false” origin, its inten- 
sity being distributed in the progression that gives rise to 

the “allowed character” distribution. 
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influence that vibrational progressions obviously 
will have in locating the distribution center of grav- 
ity. As one might expect, the same parameters that 
define the contribution of vibrational progressions 
to mean frequency define also a width: 

“Forbidden character” has a width and center of 
gravity that differs from that for the allowed 
character. Indeed the two-quantum coupled “for- 
bidden character” has a width and center of gravity 
that differs from that for the one-quantum coupled 
“forbidden character”. Furthermore, one can ex- 
pect that these differences are not exactly the same 
in circular dichroic absorption as they are in ordi- 
nary absorption. 

The difference in circular dichroism between the 
mean frequency for the one-quantum coupling and 
the “allowed character” is: 

o”,.,,,, - &.* = w, + t(w - Wr@,)2/O*fr, + A0 (JO) 

The difference for ordinary absorption is the same 
except that A replaces A’. Without A or A’, the one- 
quantum coupled “forbidden character” will be at 
higher frequencies almost exactly as expected from 
its displacement of false origin by (oh from the true 
origin, the 00 vibration band (Fig 6). The second 
term depending on frequency difference is com- 
paratively small. 

The terms A and A0 depend in a complex way on 
the change in size or shape of a molecule that can 
accompany the electronic excitation of the transi- 
tion. The circular dichroism term A0 depends in part 
on the factor C,(K“\m[@)S,. Thus if the reshaping 
indicated by 8, corresponds in motion to a vibron- 
ically coupled vibrational mode, it can influence 
the distribution of one-quantum coupled rotatory 
strength. A and A0 are not equal and can be 
separately positive, negative, or zero. 

Ignoring relatively small frequency difference 
terms that arise from mr # m(,), the difference be- 
tween “forbidden character” and “allowed charac- 
ter” width of distribution can approximately van- 
ish. But in case one encounters molecular reshaping 
such as contributes to the A0 of Eq 50, the width of 
one-quantum coupled “forbidden character” can be 
up to half again as large as that of the allowed 
character. More exactly, if there is only one 
vibrational mode involved in the molecular reshap- 
ing, and if that vibrational mode is also vibronically 
coupled 

(AWN,,) = ~(Ao;.,)~ + r” (51) 

r” depends on the same parameters that defined A’. 

ZT-0 r 
W 

Fig 6. Upper Panel: Potential surfaces as in figure 5 but 
with Q. = Qti., 

Lower Panel: A schematic electronic spectrum which 
may arise from the potential surfaces. The “allowed 
character” spectrum consists of the dashed portion of the 
O-0 band. The one-quantum coupled “forbidden 
character” spectrum consists of the .1,-O band. The two- 
quantum coupled “forbidden character” spectrum con- 
sists of the 2.4 band and upper portion of the 04 band 
or the I, L-0 band atone (0, > uT) where Qn is the nor- 
mal mode coordinate of another set of potential surfaces. 
Again each signed feature could serve as a “false” origin, 
its intensity being distributed in the progression that gives 
rise to an “allowed character” distribution like that shown 

in Fig 5. 

The width for ordinary absorption is the same ex- 
cept r replaces P. 

The two-quantum coupling contributions to mean 
frequency and width of “forbidden character” are 
all the more complex. In the case of mean fre- 
quency, when there is only one coupled mode and it 
is not related to molecular reshaping on electronic 
excitation, the two-quantum component is centered 
at a frequency higher than the “allowed character” 
by approximately 4/3 w. The corresponding value 
for one-quantum coupling was approximately 0, (cf 
Eq SO). These mean frequency characteristics for 
tw~quantum coupling are illustrated in Fig 7. 

It would appear that the identification of “charac- 
ters” by the uniquely different properties of their 
spectral distributions may well be feasible. Com- 
parable data on a closely related set of molecular 
systems would aid such “spectral analyses”. 
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Fig 7. The two-quantum coupling bands (cf. Fig 6) and 
their mean frequencies Qu,,, and arc,...,. The two-quantum 
vibrational integrals of Eqs 21 and 22 show that the inten- 
sity of the 27-O band is twice that of the vibronically 

coupled part of the O.-O band. 

The distribution of intensity in magnetically in- 
duced circular dichroism of non-degenerate states 
should lend itself to similar treatment.” Except for 
terms that will be the analogs of A0 and r”. it is clear 
that similar effects should be observed. And 

moreover, the intensity of ketone n - n* “forbid- 
den character’* should be more prominent than in 
natural circular dichroism.‘s,‘6 
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